Semi Supervised Feature Learning for Tumor Growth Prediction

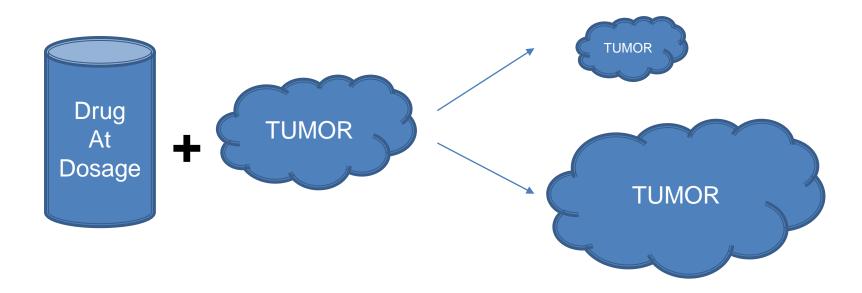
Stewart He, Jonathan Allen, Ya Ju Fan (LLNL)

Judith D Cohn (LANL)

Fangfang Xia (ANL)

Prediction Problem

Given drug features, RNASeq features, and dosage predict tumor reaction.



Data

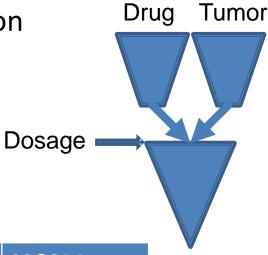
 Over counts since CCLE and GDSC contain many of the same tumors under different IDs

Dataset	# drugs 3820 dims	# tumors 942 dims	Total datapoints
CCLE	24	474	84,098
CTRP	370	812	3,822,792
GDSC	247	670	1,140,574
NCI60	52641	59	18,590,413

Regression results

- Used Siamese neural network to do regression
- Perform inter-dataset test.
 - Example: Train/validate on CCLE test on CTRP
- Poor results using R^2

Testing-> Trianing	CCLE	CTRP	GDSC	NCI60
CCLE	.77	08	32	77
CTRP	.54	.81	12	.17
GDSC	.18	52	.72	-1.27
NCI60	.01	02	05	.88

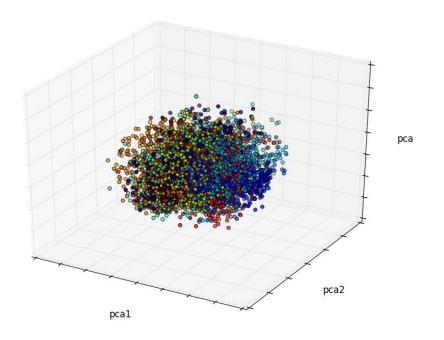


Learn better features

- Very few examples of tumors
- RNASeq originally has 17k features
 - 942 landmark RNASeq genes are hand engineered
- We want better features:
 - More generalized across different types of tumors
 - Learned from unlabeled data
 - Good for regression
 - Use Autoencoders?

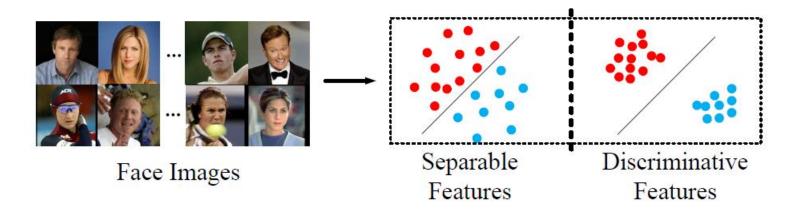
The problem with Autoencoders

- The latent space is good for reconstruction.
 - That's all the cost function cares about
 - If you're lucky they might be good for other things
- MNIST trained auto encoder
 - First 3 principal components
 - Colored by class



Modify with Center Loss

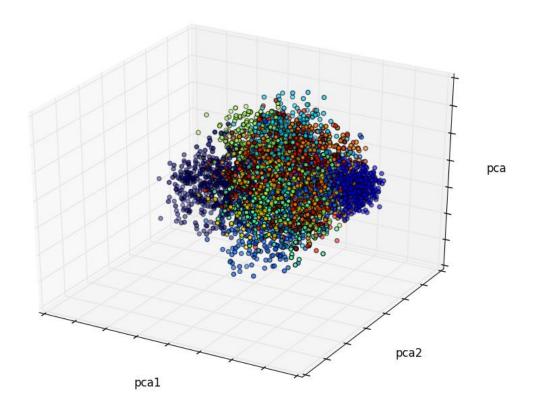
- Center Loss designed to be used for classification
 - A Discriminative Feature Learning Approach for Deep Face Recognition
 Wen et al., 2016



$$\mathcal{L}_C = \frac{1}{2} \sum_{i=1}^{m} \| x_i - c_{y_i} \|_2^2$$

Center Loss + Autoencoders

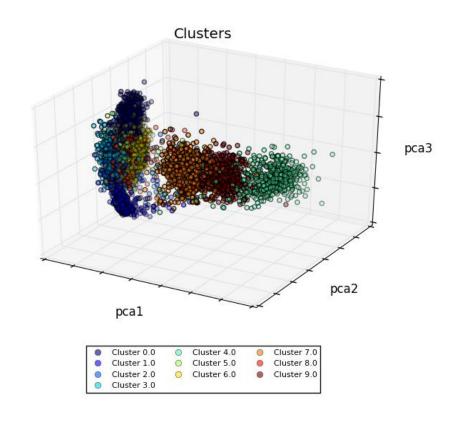
- Does not play well. MNIST example:
 - Easily falls for trivial solution



Center Loss + Center Distance

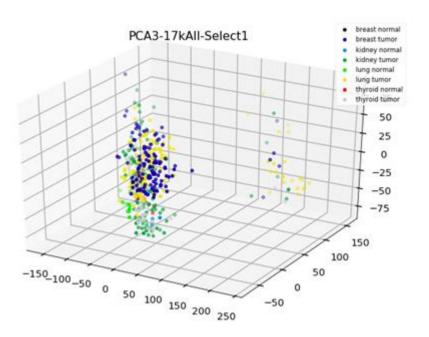
Force the centers of classes to spread out

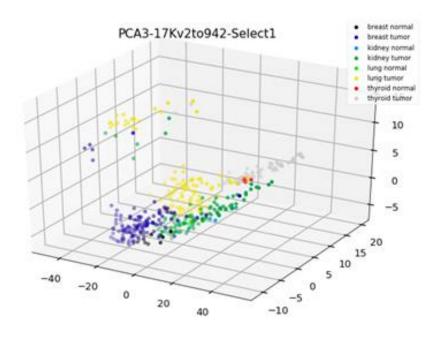
$$center_dist = \sum_{i,j \in centers} ||c_i - c_j||^2$$



Unlabeled tumor dataset

~12,700 tumors 37 unique clusters (only subset shown for legibility)





Learned features applied to regression

Modest improvement to regression results

training, testing->	ccle	ctrp	gdsc	nci60
ccle: .0001 l_r	.75	325	05	3
ctrp: .0001 l_r	.546	.75	09	.24
gdsc: .0001 l_r	.27	41	.76	79
nci60: .0001 I_r	.095	.177	23	.88

Acknowledgements

- Maulik Shukla data organization/access
- Ben Mcmahon helped Judith with clustering
- Rick Stevens project PI

Supplemental full image

